
CPSC 526: 2D Swimming Optimization

Ben Humberston∗

University of British Columbia

Figure 1: Tadpole creature swimming using automatically learned control strategy

Abstract

This paper describes the motivation, implementation process, and
results of applying a covariance matrix adaptation (CMA) optimiza-
tion to 2D rigid body characters that sit at the surface of a level
fluid air interface. The optimization seeks to maximize swimming
performance while optionally minimizing energy usage or angular
motion of the character’s body. Positive results are presented for
two simple characters, with analysis of negative results for a more
complex human character.

Keywords: fluid simulation, PD control, animation

1 Introduction

Aquatic locomotion control provides an interesting companion
problem to that of ground-based locomotion. As noted by [Yang
et al. 2004], unlike for walking and running, the character state
(positions & velocities) during swimming is comparatively stable
and smooth during the course of the stroke. As such, it provides a

∗e-mail: bhumbers@cs.ubc.ca

more well-behaved testing environment for evaluating control algo-
rithms. On the other hand, the introduction of fluid dynamics to the
rigid body simulation provides unique new challenges for building
a controller.

In this work, we explore one method of designing the control of a
virtual swimming character in two dimensions. A character com-
posed of 2D rigid bodies is placed at the surface of a fluid environ-
ment that applies buoyancy and drag forces to the character. Two
possible control strategies are implemented and compared. The first
strategy learns the parameters for control functions, one per joint,
which directly produce joint-driving torques. The second strategy,
rather than directly learning desired torques, learns angle trajectory
functions that are used to drive PD controllers at each joint. As
described in Section 4, the second approach yielded more stable re-
sults for complex creatures. The control parameters for both strate-
gies were chosen via the CMA technique as described in [Hansen
and Kern 2004].

We discuss previous work for virtual swimming characters in Sec-
tion 2. Section 3 gives details on how the simulation environment
and virtual characters are defined. The two control strategies used
in this work are described in Section 4, and the cost function that
evaluates the quality of these controls is explained in Section 5.
Section 6 briefly describes the CMA-ES algorithm and its method
of optimizing the controller using a given cost function. The re-
sults of optimizing controllers for various creatures are given in
Section 7, with a discussion of the project results in Section 8. Fi-
nally, a short overview of the code architecture of this project is
given in Section 9

2 Related Work

In [Sims 1994], both the morphology and control system of
procedurally-defined articulated creatures are evolved using a ge-
netic algorithm. One of the optimization goals centers on the swim-
ming capabilities of a creature in a simple drag-force fluid envi-
ronment. [Tu and Terzopoulos 1994] outlines the creation of au-
tonomous fish in a 3D virtual marine environment. [van de Panne
and Eugene 1993] provides a 2D fish as a demonstration for target-
following locomotion with a stochastically optimized controller.

[Yang et al. 2004] presents a detailed exploration of a human char-
acter swimming in a fluid environment. It addresses complications
from the air-fluid boundary plane and shows results for various fluid
viscosities. The controller for the swimmer is a multi-layer sys-

Figure 2: Method for calculating buoyancy on a body. Once a list
of submerged edges are determined (yellow lines), the total sub-
merged area is found by summing the areas of each triangle defined
by two adjacent submerged vertices and the point where the body
intersects the fluid surface (green outlines). The buoyancy force is
applied in the upward direction with magnitude proportional to the
submerged area.

tem which uses a top-level basic keyframed stroke and lower-level
stroke modifications to achieve various tracking or velocity goals.
[Tan et al. 2011] optimizes the swimming strategy of arbitrary ar-
ticulated characters in a fluid environment using a realistic fluid
simulation based on the Navier-Stokes equations as described in
[Carlson et al. 2004]. Although this project uses a much simpler
fluid model, we also employ the CMA optimization strategy from
[Tan et al. 2011].

3 Simulation

The environment simulation was implemented using JBox2D, a
Java port of the popular Box2D physics engine. The existing rigid
body capabilities were supplemented with fluid buoyancy and drag,
which creates forces on the bodies of characters. In this section we
describe the details for character construction and simulating the
fluid environment.

3.1 Character Specification

Each character is composed of a number of rigid bodies. It is as-
sumed that the character is being viewed sidelong, so the different
parts of the character at various depths will intersect on the 2D plane
of projection. As such, the bodies that make up a character are free
to intersect without penalty; physical motion constraints are im-
posed only by angle limits at the joints. Based on the given control
strategy, a character may apply torques at each of the joints. The
direct torque control strategy uses simple maximum torque limits,
but trajectory-based controls set no limits on the torque produced
by the associated PD controllers. Instead, low PD gains are used
where possible to keep torques small and to allow reasonably sized
simulation time steps.

3.2 Fluid Environment

The physical environment consists of a fluid pool half-plane that
extends downward from the x-axis. Similar to [Yang et al. 2004],
the internal fluid state is not explicitly modeled beyond a global
average fluid velocity. The fluid applies both buoyancy and drag
forces to submerged character bodies. An upward buoyancy force
is applied at the centroid of the submerged portion of each body
segment of a character, with the magnitude defined by

|Fb| = Cbρ|g| (1)

Cb is a user-defined buoyancy constant, ρ is the fluid density, and g
is the magnitude of the gravitational force. The tessellation method
used to find the submerged area of a body is illustrated in Figure 2.

A drag force is applied to the submerged portion of each body edge.
The drag force is directed opposite the fluid velocity relative to the
center point of the submerged edge segment. Its magnitude is set to

|Fd| = Cdln|vn|p (2)

Here, Cd is a user-defined drag constant, ln is the length of the sub-
merged edge as projected onto a line perpendicular to the relative
velocity of the fluid, vn is the relative velocity of the fluid along the
edge’s normal, and p is an exponent set to either 1 or 2. Whether or
not the |vn| term is raised to the first or second power depends on
the fluid properties; this work uses the former value in all cases.

4 Control

Each character applies torques at its joints according to optimized
control strategies. In contrast with the swimming human in [Yang
et al. 2004] and the SIMBICON walker of [Yin et al. 2007], there
are no manually-defined kinematic “keyframe” poses used as mo-
tion targets. Instead, we either directly learn torque controls or
search for target trajectories that are followed using PD controllers
at runtime. This keyframe-free strategy was chosen in order to ex-
plore whether desirable behavior could be produced without requir-
ing explicit human hints to the correct swimming strategy in the
form of target poses. We compare the two implemented control
approaches in the following sections.

4.1 Direct Torque Control

In this approach, each joint applies a torque depending only on the
current simulation runtime. The torque functions are composed of
a number of basis functions whose parameters are optimized to pro-
duce different torque profiles. Gaussian and sinusoidal basis func-
tions were implemented, with the type and number of basis func-
tions fixed by joint. For joints that use n Gaussian bases, the jth
basis function is defined by a weight coefficient Aj , a mean value
µj , and a standard deviation σj :

τ(t′) =

n∑
j=1

Aj
1

σj

√
2π

exp(
−(t′ − µj)

2

2σ2
j

) (3)

t′ = t mod TGaussian (4)

To allow for cyclic torques, the simulation runtime t is transformed
into t′ by constraining its values to the time period TGaussian,
where TGaussian is a free parameter to be optimized, before be-
ing used as input to the torque control.

Alternatively, torque functions using sinusoidal basis terms have
three parameters per term: amplitude Aj , period Tj , and phase off-
set φj :

τ(t) =

n∑
j=1

Aj sin(
2πt

Tj
+ φj) (5)

The direct torque control strategy proved sufficient for a simple one-
joint character, but did not scale well to more complex characters

like the tadpole or human. It is hypothesized that the fitness land-
scape for these characters when using direct torque control may be
too rough to navigate without adding more intelligent constraints
on torques. For example, coordinated swimming control may re-
quire the periods and amplitudes of torques for different joints to
be related by a simple ratio to encourage synergies between joints.

4.2 Reference Trajectory Control

Due to the failure of direct torque control to scale to complex char-
acters, a trajectory-based control strategy was also implemented.
In this approach, the controller defines joint angle reference trajec-
tories as a function of a phase input Φ. The simulation runtime
t is generally used as the driving phase, though alternative phase
sources may also be used (in the human character experiment, the
angle of a shoulder is used as phase, as described in Section 7.3).

Polynomial and sinusoidal trajectory basis functions were imple-
mented for this project. The latter is inspired by [Tan et al. 2011],
which notes that a sine-based angle trajectory intuitively fits the
cyclic nature of swimming strokes. For polynomial trajectories,
given a manually chosen number of terms n, the term coefficients
cj are the free parameters to be optimized:

qr(Φ) = cnΦn + cn−1Φ(n−1) + ...+ c2cnΦ2 + c1Φ + c0 (6)

As with the direct torque controllers, sinusoidal reference trajec-
tories are composed of n sine-function basis terms, each with the
amplitude Aj , period Tj , and phase offset φj as free parameters:

qr(Φ) =

n∑
j=1

Aj sin(
2πΦ

Tj
+ φj) (7)

During simulation, given a reference trajectory qr for a joint and
the current phase value Φ, a torque is applied to track the trajectory
using PD control:

τ(Φ) = −kp(q(Φ)− qr(Φ))− kdq̇(Φ) (8)

q and q̇ are the current value of the joint angle and joint angular
velocity. kp and kd are the proportional gain and velocity damping,
respectively, and are chosen per character based on manual experi-
mentation.

5 Cost Function

A simple cost function was created to guide the evolution of the
control parameters in the optimization stage. Given a control strat-
egy, a character runs in the simulated fluid environment for a user-
specified period (generally 5 or 10 seconds); the value of the cost
function is updated after each simulation time step. Aside from the
primary goal of producing characters that move in the horizontal
direction (along the surface of the water), the cost function contains
terms that seek to minimize energy consumption and deviation of
the characters root body from its original orientation:

E = w1Espeed + w2Edisp + w3Eenergy + w4Eorientation (9)

Espeed is the sum of the absolute deviations from a user-defined
linear velocity for the character at each time step. Edisp is an al-
ternative measure of locomotion fitness that can be used either as

a replacement for or in conjunction with Espeed. It is set to the
absolute difference between a target terminal position and the char-
acter’s position at the conclusion of the simulation period. Espeed

encourages the character to maintain as close a velocity to a given
target velocity as possible, while Edisp encourages a final target
displacement value regardless of the intermediate velocities.

Eenergy is the sum of absolute torque magnitudes applied by the
character across all joints during the simulation. Eorientation is the
sum of deviations of the character’s orientation above some thresh-
old value when compared to its original orientation at the start of
simulation. The deviation threshold is used to avoid penalizing very
small orientation deviations.

The combination of weight coefficients wi are chosen based on
each experiment, as described in Section 7.

6 Optimization

The control parameters for both the direct torque control and
trajectory-based approaches were derived using the covariance ma-
trix adaptation evolution strategy (CMA-ES). The Java implemen-
tation of this algorithm provided as a companion to [Hansen and
Kern 2004] was employed using the recommended population size
and other learning parameters. CMA-ES is a stochastic evolution-
ary scheme that samples the space of control parameters using a
dynamically changing distribution. At each iteration, a group of
control samples are evaluated for fitness using the cost function
described in Section 5. The most successful samples are used to
modify the covariance matrix and sample means of the distribution,
influencing the probability of drawing similar samples in the next
iteration. The best ever samples are remembered and returned once
a maximum fitness or iteration limit is reached by the algorithm.

Generally, the number of CMA iterations required to find optimal
values varied by experimental specifics, such as the character being
controlled and the complexity of the cost function. Experiments
using the simple paddle character and tadpole generally used fewer
than 100 iterations before converging to satisfactory control strat-
egy. The human character controller, however, failed to converge to
acceptable fitness even after several hundred iterations. The time to
run 300 iterations of CMA optimization for the human character’s
controller, the most complex control example in this project, ran
in approximately 3 minutes on a machine with a 2 GHz dual-core
processor with 4 GB memory.

Figure 3: GUI for testing optimized strokes in a fluid environment.
The controls on the right side of the screen allow the user to se-
lect different characters, modify fluid properties, and change other
simulation settings.

Once the control parameters for a character are chosen using the
CMA optimizer, they are saved to a comma-separated value file.
The loaded parameters may then applied to the character in a pro-
vided graphical user interface application in order to view and inter-
act with the results of the control policy in real-time. A screenshot
of this application is shown in Figure 3.

7 Evaluation

(a) Paddle Character

(b) Tadpole

(c) Human

Figure 4: Characters used in this project. Yellow dots indicate joint
positions

Optimization experiments were run with three characters of varying
complexity, as shown in Figure 4. The fluid density, buoyancy, and
drag constants were set to a constant value of, respectively, ρ = 1.1,
Cb =, andCd = 0.7 across all experiments. The PD controller gain
and damping values, kp and kd, were manually chosen for each
experiment based on empirical testing. We describe the specifics
for individual experiments below. Sequences demonstrating these
experiments are included in the accompanying video (video link).

7.1 Simple Paddle

The paddle character consists of only a low-density deck and a
higher density paddle body that rotates about a fixed joint at the
back of the deck. In contrast to the tadpole and human characters,
this character employs the direct torque controller approach, which
is possible due to the simplicity of the character. It uses a combina-
tion of two Gaussian basis functions to determine the joint torque at
a given time. Figure 5 illustrates the locomotion over time of three
paddle creatures that were optimized solely based on different tar-
get speeds.

We also derived controllers that optimize energy efficiency (mini-
mal torques) or for minimal deviation of the deck body’s orientation
by appropriately reweighting the cost function. In the torque min-
imization experiment, the faster characters maintain a reasonable

speed while exerting significantly less torque than in the speed-
focused experiment. However, the slowest character remains sta-
tionary rather than apply enough torque to move forward at a slow
rate. In the experiment where the cost function encouraged minimal
deck orientation deviations, the characters apply modest and slowly
varying torques to avoid “tipping” the deck while still attempting to
move at a target speed.

7.2 Tadpole

The tadpole character bears a resemblance to the recursive aquatic
creatures in [Sims 1994]. A broad head segment is connected to a
series of actuated tail bodies. Each joint uses a sine-based trajectory
function, which results in cyclic motion of the tail.

For the tadpole experiments, only Edisplacement was considered,
with the goal displacement for a 10 second simulation time set to
5 meters. Using the controller derived from this cost function, the
tadpole whips each tail segment back and forth to produce forward
thrust. We observed the performance of the tadpole controller after
running 1, 5, and 50 CMA iterations. While the tadpole is able to
drive itself forward at a low speed after only a single iteration, it
achieves its top speed of about 0.6 m/s only after 50 iterations.

7.3 Human

The most complex control experiment uses a human-style character.
The character is comprised of a head, a torso, and a pair each of
arms and legs. While the head and appendages are dense enough
to sink, the torso’s density is roughly half the fluid density, which
emulates the buoyancy of a torso when the lungs are filled with
air. The character has 9 free joints: 1 for the neck where the torso
meets the head, 2 for each arm (shoulder and elbow), and 2 more
for each leg (hip and knee). Note that, similar to the joint from
the paddle character, the shoulder is not angle-limited, so it may
revolve continuously through a circle. This emulates the rotational
capabilities available to a three-dimensional human. The elbow,
hip, and knee joints used sine-based trajectories with reasonable
joint limits.

In order to help stabilize the synchronization between different
limbs, the human used a cyclic phase input to the reference tra-
jectories rather than the linear time input used by the tadpole’s tra-
jectories. The phase value Φ was a mapping of the right shoulder
joint’s angle into the [0, 1] range. The trajectory of the right shoul-
der joint was manually chosen to increase linearly with time, but all
other joint trajectories were optimized using Φ as input. Using this
phase value rather than time drives the character to different poses
based on the reference joint’s current angle. If the phase-driving
right shoulder lags behind its target trajectory, the other joints will
maintain pace with it rather than moving ahead with time, a behav-
ior which was hypothesized to increase stroke stability.

Unfortunately, no natural swimming motions were found for the
human character using either direct torque motors or the optimized
reference trajectories. The final human motions are erratic and do
not consistently move in any one direction. Experiments showed
that using the shoulder-locked phase helped prevent “loop-de-loop”
motions of the character caused by out-of-synch joints, but the arms
and legs still failed to work in tandem to move the character for-
ward.

The accompanying video for this project includes a demonstra-
tion result of the final human control for the viewer’s scrutiny and
amusement.

http://www.youtube.com/watch?v=JfJmE54PdSM&

Figure 5: Snapshots of three paddle characters optimized for different target speeds. The red, green, and blue characters are optimized to
move at horizontal speeds 0.5, 2, and 5 m/s, respectively, though they are not able to attain the higher velocities. Note that the highest speed
character, in blue, flips over onto its back before advancing past the other characters. See accompanying video for an animated version of
this experiment.

8 Discussion

The controller scheme with CMA optimization scheme provided
positive results for simple characters, but did not find suitable strate-
gies for complex morphologies. This failure to scale may be caused
by poorly chosen optimization parameters, a discontinuous cost
landscape with isolated minima, or other factors. While the opti-
mization algorithm in this project may be able to refine an existing
stroke solution, it is not able to derive a complete control strategy
for high dimensional characters. This provides motivation to use
manually defined key stroke poses as in [Yang et al. 2004], which
helps narrow the control space at the cost of requiring manual pose
construction.

Another difficulty encountered during implementation was finding
a way to set manual hyper-parameters of the system, such as the PD
gain and damping or the relative cost function term weights. Gener-
ally, these values needed to be tuned for each character specifically.
Finding these values automatically would require a higher level op-
timization infrastructure that makes use of the outputs of the cost
function and current CMA optimizer.

Finally, it should be noted that the fluid simulation used in this
project was greatly simplified from the physical system it repre-
sents. Only drag and buoyancy fluid forces are modeled; fluid lift
and friction forces were ignored, and internal fluid velocities are
assumed to be zero at all points. The coupled rigid-fluid simu-
lator in [Tan et al. 2011] demonstrates how using simplified fluid
models may affect the learned control. Additionally, the two-
dimensional planar representation required characters to use den-
sity values and joint limits that cannot be directly correlated to their
three-dimensional equivalents. A future extension of this project
may explore optimizing motion for three dimensional characters.

9 Code Reference

The following is a brief architectural layout of the source code for
this project:

• Entry Points: The primary entry point for the GUI appli-
cation to view swimming characters in realtime is found in
SwimGUIMain.java. The control optimization algorithm is
executed by running SwimOptimizeMain.java with one of the
character versions as an input argument (eg: “tadpole”, “hu-
manCrawlRefTraj”, etc.).

• GUI: The user interface is adapted from the JBox2D testbed
application. In the GUI, a user may load pre-optimized
characters. Fluid parameters such as buoyancy and drag
may be modified in realtime. Relevant code is found in the
ubc.swim.gui package.

• Optimization: The main CMA optimization loop is found

in ubc.swim.optimization.SwimmerOptimization. The fitness
function used for all the experiments in this work is defined in
ubc.swim.optimization.SwimFitnessFunctionA.

• Simulation: The code that defines the characters, ref-
erence trajectories, and torque motors are found in the
ubc.swim.world package and its subpackages. The buoyancy
and fluid forces are applied by a force controller found in
ubc.swim.dynamics.controllers.FlulidController.java.

References

CARLSON, M., MUCHA, P. J., AND TURK, G. 2004. Rigid
fluid: animating the interplay between rigid bodies and fluid.
In ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA,
SIGGRAPH ’04, 377–384.

HANSEN, N., AND KERN, S. 2004. Evaluating the cma evolution
strategy on multimodal test functions. Parallel Problem Solving
from Nature-PPSN VIII 7, 282–291.

SIMS, K. 1994. Evolving virtual creatures. In Proceedings of the
21st annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH ’94, 15–
22.

TAN, J., GU, Y., TURK, G., AND LIU, C. K. 2011. Articulated
swimming creatures. In ACM SIGGRAPH 2011 papers, ACM,
New York, NY, USA, SIGGRAPH ’11, 58:1–58:12.

TU, X., AND TERZOPOULOS, D. 1994. Artificial fishes: physics,
locomotion, perception, behavior. In Proceedings of the 21st
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, SIGGRAPH ’94, 43–50.

VAN DE PANNE, M., AND EUGENE, F. 1993. Sensor-actuator net-
works. In Proceedings of the 20th annual conference on Com-
puter graphics and interactive techniques, ACM, New York, NY,
USA, SIGGRAPH ’93, 335–342.

YANG, P.-F., LASZLO, J., AND SINGH, K. 2004. Layered dy-
namic control for interactive character swimming. In Proceed-
ings of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, SCA ’04, 39–47.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbicon:
simple biped locomotion control. In ACM SIGGRAPH 2007 pa-
pers, ACM, New York, NY, USA, SIGGRAPH ’07.

