
Sparse Solvers for Poisson Seamless Cloning

Ben Humberston∗

University of British Columbia

Figure 1: Comparison of the results of basic pixel cloning (left) with seamless cloning using Poisson image editing (right)

Figure 2: Enlarged image showing domain boundary detail for ba-
sic (left) and seamless cloning (right) for a source image of the
sun imposed onto the yellow sky of a destination image. The basic
cloning suffers from a sharp gradient change at the border of the
cloned region, visible as a four-sided polygon in this image. Seam-
less cloning hides this gradient discontinuity by merging the source
gradients rather than its pixel values directly.

Abstract

In image processing applications, a common problem entails merg-
ing a region from a source image into a corresponding portion of
a destination image without producing visual artifacts at the edges
of the cloned region. Poisson image editing is one recent technique
that accomplishes this seamless cloning. It uses a Poisson formula-
tion that equates the Laplacian of the source and destination images
in the region of interest in order to smoothly transition from the
destination image pixel values at the border to the source pixel val-
ues on the interior. The interior pixel values must satisfy a sparse
system of equations with nonhomogeneous Dirichlet boundary con-
ditions. This work describes the implementation of and explores
the relative performance for several different iterative sparse solvers
as applied to an instance of the Poisson seamless cloning problem
at various scales. The solvers for comparison include successive
over-relaxation, preconditioned conjugate gradient, and a multigrid
V-cycle solver.

Keywords: sparse matrices, image processing, successive over-
relaxation, preconditioned conjugate gradient, multigrid

1 Introduction

The cloning problem in image processing poses the question of how
one may merge some portion of a natural image into another with-
out visible seams. By “seams”, we refer to the perceptual discon-
tinuity at the border of a cloned region where a human observer
may clearly delineate between the source and destination pixels.
Two-dimensional images of natural scenes (eg: landscapes, fam-
ily portraits) usually have no simple analytic formula to describe
the intensity value of each pixel due to the high frequency detail
of the image. High frequency content arises from detailed material
textures, lighting within the scene, and noise in the image acquisi-
tion process itself, among other factors. As a result, basic cloning,
which directly replaces destination pixel values in the cloned region
with those from a source image, will create visible seams due to the
sharp change in pixel intensity at the border of the region. See the
left side of Figure 2 for an example of this type of seam.

The Poisson image editing tools proposed by [Pérez et al. 2003] are
designed to eliminate this issue. Their work introduces the notion
of a guidance vector field, which dictates the new pixel gradient val-
ues of the destination image within the cloned region. Rather than
importing pixel values directly from a source, Poisson image edit-
ing instead sets pixel values by painting inward from the existing
border pixels of the destination image using the guidance vector
field to shape the gradients. Although the Poisson image editing
framework yields numerous image processing tools, we shall fo-
cus on the seamless cloning tool in particular. For this operator,
the guidance vector is defined by the source image gradient field.
Thus, Poisson seamless cloning determines the clone region pixel
intensities by fixing the pixel values at the region border and setting
interior pixels such that the source image gradient is preserved. An-
other example of results obtained using the seamless cloning tool as
opposed to basic cloning is shown at the top of this page in Figure 1.

In order to solve for the new pixel intensities in the clone region,
a sparse linear system is constructed, the details of which are dis-
cussed below in Section 2. This sytem may be solved using iterative
methods for sparse matrices. Three well-known solvers in partic-
ular are implemented and presented in this work. The basic sta-
tionary method of successive over-relaxation (SOR) as described in
[Ascher and Greif 2011] is given as a baseline for the other solvers.
Because the Poisson seamless cloning problem may be formulated
using the 2D symmetric positive-definite discrete Laplacian matrix,

∗e-mail: bhumbers@cs.ubc.ca

the conjugate gradient with optional preconditioner (PCG) is ap-
plicable to the problem as well. Finally, because it is natural to
consider the cloning problem at various image scales, a multigrid
V-cycle solver (MG) is presented that correctly accounts for both
border and interior pixel constraints. Further information on the
implementation of these solvers is given in Section 3.

Quantitative comparisons of the performance of these solvers on
an instance of seamless cloning are provided in Section 4. Par-
ticular interest is given to the relative performance measures when
the different solvers are applied to problems of various scales (ie:
larger or smaller regions for which new pixel values must be de-
termined). Unsurprisingly, the multigrid method, which solves sys-
tems in a number of iterations independent of the problem size,
proves much more viable than SOR and unpreconditioned CG for
very large cloning regions. A brief discussion of the implications
of the experimental results and concluding remarks are presented in
Section 5.

1.1 Related Work

Discrete solution methods to the Poisson equation are frequently
recruited for image processing problems, which generally involve
computations on a regular two-dimensional pixel grid with well-
defined gradients. [Pérez et al. 2003] notes several applications of
the Poisson equations to image processing, including HDR image
compression ([Fattal et al. 2002]) and object suppression or addi-
tion ([Elder and Goldberg 2001]).

An implementation of Poisson seamless cloning is provided by [Hu
]. However, the problem setup is unoptimized, and the system
solve is effected using the default MATLAB backslash operator.
Additionally, no qualitative or quantitative performance results are
given. The current work, in contrast, focuses on implementing and
deriving quantitative performance results for several sparse solvers
when applied to the seamless cloning problem. Finally, the imple-
mentation in [Hu] uses the “alternative”, non-symmetric formula-
tion of the coefficient matrix A (see equation 6) and so is incompat-
ible with the preconditioned conjugate gradient method (this was
verified in practice; see Section 3).

2 Poisson seamless cloning formulation

Here, specific details are given on how the seamless cloning prob-
lem is expressed and solved as a sparse linear system base on the
Poisson equation.

Note that the following discussion assumes scalar pixel values. If
an image has multiple color channels (eg: 3 channels for an RGB
image), each channel is determined separately; the final merged im-
age results from displaying together the independently solved color
channels. In this project’s implementation, all channels are solved
in parallel using multiple right-hand sides and solution vectors. Al-
though there are potential performance gains from employing tech-
niques designed for problems with the same coefficient matrix and
multiple right-hand sides, this project limits itself to solvers that
only operate on one channel at a time. In fact, all performance re-
sults in Section 4 use a single-channel image for simplicity.

The Poisson seamless cloning problem requires that we determine
new pixel values inside a clone destination region that follow the
gradient values from some source image g, while fixing the existing
destination border intensities. [Pérez et al. 2003] outlines the mini-
mization problem associated with using a guidance vector field v to
interpolate the values from a border ∂Ω into a region Ω in the con-
tinuous domain. Integrated across all points in the clone region Ω,
we wish to set new intensity values f that minimize the difference

between the intensity gradient ∇f and the corresponding value of
the guidance field v, subject to the constraint that the intensity val-
ues f on the border of the clone region remain unchanged from
their current destination image values, f∗.

min
f

∫∫

Ω

|∇f − v|2,withf |∂Ω = f
∗|∂Ω (1)

From this, we see that the titular “Poisson” for this technique arises
from the fact that the solution to equation 1 is also the unique solu-
tion to the Poisson equation with inhomogeneous Dirichlet bound-
ary conditions:

∆f = divv over Ω,withf |∂Ω = f
∗|∂Ω (2)

In the case of seamless editing, we simply set the guidance field v
to be the gradient of the source image g:

v = ∇g (3)

Thus, we have specified a minimization problem whose solution
will satisfy our twin constraints that first, the border pixels must
remain unchanged from their current value f∗, and second, the in-
terior pixel gradients must equal the gradient from the source image
g.

The discrete solution to the preceding continuous problem, adapted
from [Pérez et al. 2003], satisfies the following system of linear
equations:

for all p ∈ Ω : 4fp −
∑

q∈Np∩Ω

fq =
∑

q∈Np∩∂Ω

f
∗

q +
∑

q∈Np

(gp − gq)

(4)

Here, Np is the set of 4 neighboring pixels of p, f∗

p indicates the
values of the destination image at p, gp is the corresponding value
of the source image at p, and fp is one of the pixels in the cloned
region Ω whose intensity value we must set. Gradients are approx-
imated at each pixel using finite differences, which gives us the
expression gp − gq on the right-hand side to approximate ∇g at the
point p+q

2
. The first sumation term on the right-hand side enforces

the Dirichlet boundary conditions for pixels adjacent to the border
of the clone region, ∂Ω. This system of equations may be expressed
in matrix notation as:

Af = b (5)

A is the standard 2D discrete Laplacian matrix of size N x N ,
where N is the number of pixels in the clone region. The right-hand
side b is simply the finite approximation of the source gradient ∇g
for all non-border pixels; border pixels have the fixed destination
value of their neighbors outside the clone region added on top of
this gradient value, as shown in equation 4.

2.1 Alternative Formulation

Equivalent in its effect to the above setup, we may create an alterna-
tive system of equations in which we include the fixed boundaries in
the linear system solution, rather than encoding them in the right-
hand side vector [Jeschke et al. 2009]. To do so, we modify the
standard Laplacian matrix A so that rows corresponding to border

Figure 3: The sparsity structure for a 10x10 example of the alter-
native coefficient matrix for a Poisson seamless cloning problem.
Note that rows corresponding to border elements (the first and last
10 rows as well as every 10th interior row) have only a diagonal
element, which is set to 1 (identity). This matrix is positive definite,
but not symmetric

pixels become simple identity rows with 1 on the diagonal and 0 in
all other columns. The system of equations is then:

for all p ∈ Ω \ ∂Ω : 4fp −
∑

q∈Np

fq =
∑

q∈Np

(gp − gq) (6)

for all p ∈ ∂Ω : fp = f
∗

q

This format has the virtue of simplifying the right-hand side by
separating the fixed boundary constraints from the interior gradient
constraints. It is the format used by [Hu], with acceptable results.
However, because the matrix for this system is non-symmetric (see
Figure 3), we do not expect the conjugate gradient method to con-
verge when applied to instances of the problem in this format. In
practice, it was found that applying PCG to a test image problem
at various scales yielded solution estimates that tended to either di-
verge or approach a solution whose residual norm was well above
tolerance. As such, the PCG implementation in this project uses
the standard Laplacian matrix formulation from [Pérez et al. 2003],
though the alternative system showed better performance when us-
ing the multigrid solver.

3 Implementation

In this section, we outline details related to the setup for a seamless
cloning problem and to the implementation of each iterative solver.

3.1 Domain Shape Regularization

In the specification of the seamless cloning problem given by [Pérez
et al. 2003], it is not immediately clear how to convert the irregu-
larly shaped 2D region Ω into a column vector f whose elements
correspond to the entries of a normal 2D discretized Laplacian ma-
trix. The region is defined by a user-supplied binary mask image,
which in general has arbitrary shape and a variable number of pixels
in each row or column of the image grid; consequently, a typical re-
shaping operation that stacks each column of the domain (assumed
to all be of constant size) in one vector is inapplicable without mod-
ification to the domain.

Although there are methods for solving the Poisson equation with
inhomogeneous internal boundary conditions that produce an irreg-

Figure 4: A diagram demonstrating how the clone region Ω is ex-
panded from an irregularly shaped mask region into a rectangular
grid. Inside the source mask (which determines the original Ω),
the guidance vector field is still defined by ∇g, the gradient of the
source image. When the border ∂Ω is expanded to encompass the
whole rectangular region, all newly included pixels between the old
and new borders are set to use ∇f∗, the gradient of the destination
image, as their guidance field.

ular domain (for example, see [Grady et al. 2005]), we may in-
stead use the particular properties of the seamless cloning problem
to modify the region of interest Ω so that the new domain is formed
in a rectangular shape. As shown in Figure 4, we redefine the bor-
der ∂Ω to be a bounding rectangle that includes all pixels of the
original domain.

Expanding the border in this fashion will require that we add all
of the pixels between the old and new boundaries to the new do-
main Ω. Originally, for pixels strictly interior to the old domain,
the right-hand side vector b was set to the gradient of the source im-
age, ∇g (see equations 4 and 6). However, we may not assign ∇g
to new right-hand side entries, as the source image gradient outside
the mask may contain image features that the user does not wish to
include in the cloned image. Instead, we set the right-hand side for
these newly included pixels to be ∇f∗, the original gradient values
of the destination image. Since gradient fields are conservative and
a unique solution thus exists for each seamless cloning problem, it
is clear that the value that any solver assigns to these pixels will re-
main unchanged from their current values on the destination image,
f∗ (ie: starting from the fixed border values and painting inward
using ∇f∗, the solution for each of the new interior pixels p will be
just its original value f∗

p).

This regularization of the clone region shape adds a number of pix-
els to the linear system domain, increasing the size of our problem.
If we so desire, we may “warm-start” our initial solution guess f0
by setting its values to the corresponding f∗ intensities for all the
newly added pixels, which may reduce the initial residual norm.
However, as this project’s primary intent is to explore the perfor-
mance of iterative sparse solvers rather than to opitimize the seam-
less cloning operator itself, we do not implement this or other re-
lated optimizations.

3.2 Optimal SOR relaxation parameter

When using the SOR method to solve a problem of the form
Af = b, we must choose a value for a relaxation parameter ω some-
where in the range (0,2) to guarantee convergence of the scheme
[Kahan 1958]. If ω = 1, SOR reduces to Gauss-Seidel iterations.
If ω < 1, the iterations are damped, which may help the conver-
gence of currently diverging iterations. However, if our iterations
are already converging, we may choose 1 < ω < 2 in order to
accelerate the convergence rate. Assuming that we use the stan-
dard discrete Laplacian version of the coefficient matrix A for the
seamless cloning problem, we can derive explicitly the optimal pa-

rameter choice ωopt, as outlined in [Yang and Gobbert 2009]:

ωopt =
2

1 +
√

1− ρ2J
(7)

Here, ρJ is the spectral radius of the Jacobi iteration matrix T =
I − D−1A (D being the matrix consisting only of the diagonal
elements of A). For the discrete 2D Laplacian matrix A, ρJ =
cos π

n+1
, where n is the number of pixels in one dimension of the

grid, which varies with the size of the clone region. The number
of iterations until convergence is expected to be minimized when
using ωopt. In Section 4.1, we verify this fact experimentally.

3.3 PCG Preconditioners

While the conjugate gradient method alone offers passable perfor-
mance, it is typical in practice to apply a preconditioner matrix M
to the system Af = b, yielding the new system:

M
−1

Af = M
−1

b (8)

To minimize the cost of applying M−1 to Af , M is often chosen to
be a triangular or otherwise easily invertible matrix. While the pre-
conditioner solve adds a computational cost to each CG iteration,
it is included in the algorithm with the intent of reducing the to-
tal number of iterations by a more-than-compensating factor. This
iteration shaving is possible when the matrix M−1A has a lower
condition number than A alone, or when its eigenvalues are more
closely clustered than those of A [Ascher and Greif 2011].

For the purposes of this project, we test Jacobi, Gauss-Seidel, and
level 0 and threshold versions of the incomplete Cholesky decom-
position (abbreviated as IC(0) and ICT(0.001), respectively). The
Jacobi preconditioner, similar to the splitting matrix M for station-
ary Jacobi iterations, is simply the diagonal matrix D constructed
from the main diagonal of A. The symmetric variation of the
Gauss-Seidel preconditioner matrix is split into matrices M1 and
M2 to avoid the cost of matrix multiplication [Saad 2003]:

M1 = L (9)

M2 = D
−1

L
T
,

where L is the lower triangular portion of A, including the diagonal.
To use a split preconditioner of this form, M−1

1 is applied first,

followed by M−1
2 .

The IC(0) preconditioner is a Cholesky decomposition FFT of A,
except that the sparsity pattern of A is imposed on the resulting
matrix F . Similarly, the ICT(0.001) preconditioner is a Cholesky
decomposition in which elements of F below the threshold of 0.001
are dropped to 0. The drop threshold was chosen based on informal
experimentation with the ICT preconditioner that found the best
PCG performance at this value.

Quantitative performance results for the various preconditioners for
the PCG method are given in Section 4.2.

3.4 Multigrid

Multigrid solvers are designed to take advantage of the ability to re-
cast some problem types at multiple resolutions. They run a small
number of smoothing iterations at each level of resolution and re-
cursively compute a correction factor to the current residual r by
descending to a coarser resolution discrete grid (see Chapter 13 of

Figure 5: When using the alternative Laplacian formulation with
the multigrid solver, it is important that the restriction and prolon-
gation operators do not mix the gradient pixels (white interior) with
the boundary intensity values that enforce the Dirichlet boundary
conditions (black border). The top path shows the undesired mix-
ing that occurs when using normal bilinear filtering. The bottom
path demonstrates correct separation of borders and the interior
via separate filtering passes.

[Saad 2003] or [Agrawal and Raskar 2007] for algorithm details).
When converting the residual from the fine to coarser level, a re-
striction operator reduces the residual vector resolution; conversely,
when returning a correction vector from a coarse level upward to a
finer one, a prolongation operator is applied. This project uses V-
cycle multigrid, a version in which the correction term is recursively
computed a single time in between smoothing iterations. Damped
Jacobi is employed for the smoothing iterations.

A particular issue that emerged during implementation of the multi-
grid method was that the alternative formulation of the seamless
cloning problem given by equation 6 does not converge when us-
ing standard bilinear interpolation to restrict the residual or prolong
the correction vectors. The reason for this is illustrated in Figure 5.
When the restriction and prolongation operators use bilinear filter-
ing across the whole residual/correction image, the border pixel val-
ues “bleed” inward due to the 3x3 kernel of the filter (similarly, the
interior gradient pixels diffuse outward to contaminate the border
pixels). If border pixels are gradient values like the interior pix-
els, this bleeding does not pose an issue. However, because the
elements on the domain border ∂Ω are fixed to destination pixel in-
tensities f∗ rather than pixel gradients, they must be preserved (ie:
interpolated) separately from the interior gradients when restrict-
ing the residual. A small modification of the prolongation operator
that interpolates the interior points and borders in separate passes is
sufficient for this purpose.

Another difficulty that may appear during restriction is loss of mag-
nitude when computing the coarsened residual vector. During the
latter iterations of multigrid, the residual tends to have a sparse pat-
tern that is zero in most elements but significantly far from zero
in the remaining elements. If a standard intensity-preserving bilin-
ear resampler is used to restrict the residual (using the analogue of
the 1D filter [1/4, 1/2, 1/4]), the remaining non-zero elements are
mixed heavily with neighboring zero elements, which causes resid-
ual pixel values to trend closer to 0 at each level of recursion. As
a result, the corrections computed at the coarsest levels of the grid
are underestimates of the true correction needed, and the multigrid
solver becomes reliant on the damped Jacobi iterations to find a so-
lution, which may require hundreds of V-cycle iterations, depend-
ing on the problem size (this was an observed dysfunction during
the implementation of this solver).

To prevent this misbehavior, the restriction operator injects mag-
nitude into the coarsened residual by multiplying its interpolated

values by four (as recommended by [McCann and Pollard 2008]).
After this correction is made, we are able to observe happily the
hallmark feature of multigrid, that is, a near-constant number of
V-cycle iterations that is independent of the problem size.

The multigrid method requires that we choose parameters ν1 and
ν2, which specify the number of damped Jacobi iterations to run
before and after the recursive V-cycle call, respectively. In this in-
stance, they were chosen empirically by observing the multigrid
solver’s performance with different combinations of the parame-
ters. Surprisingly strong performance was achieved when ν1, the
number of pre-smoothing iterations, was set to 0, though further
research showed this is not entirely unusual for gradient image pro-
cessing applications [McCann and Pollard 2008]. The values which
gave the best performance, though, were ν1 = ν2 = 100; fewer
iterations caused V-cycles to be faster but ineffective (and led to
residual divergence when ν2 < 10) and more iterations increased
the cost of V-cycles too much to be offset by the increased smooth-
ing.

4 Results

The following provides quantitative results for the application of
SOR, regular and preconditioned conjugate gradient, and the multi-
grid method to an instance of the seamless cloning problem. A 2500
x 1700 source image of an eagle in flight (provided by [Birdwatch-
ingdaily.com]) is superimposed onto a portion of the sky of a 4000
x 3000 image of the Golden Gate Bridge (personal collection). The
source image was chosen for its detailed subject on a relatively flat
background. The destination image was selected for its broad sky
section over which there is a vertical light-to-dark blue color gradi-
ent, which is handled particularly well by seamless cloning. While
this image pair is perhaps not the most visually striking application
of seamless cloning, it is advantageous for performance testing, as
the correctness of a cloning result is quickly verified by visual in-
spection (see Figure 10 at the end of this document).

The area of the source image selected for seamless cloning is 1685
x 1843 at full resolution, which results in roughly 3.1 million pixels
for which we must solve. Note, however, that we pre-scale down
the source, mask, and destination images using bicubic filtering to
accelerate the runtime for most tests. For example, scaling the im-
age dimensions by 1/4x results in a problem approximately one-
sixteenth the size of the unscaled problem (reducing the number of
pixels to solve to 194,000).

To simplify the performance measures, we convert the 3-channel
RGB problem into a monochrome problem by limiting our cloning
operation to only the red (R) channel of the source and destination
image. Thus, there is a scalar stopping criteria and residual norm
at each iteration as opposed to a 3-element vector. Performance
when using a 3-channel image is similar to the 1-channel results,
excepting of course that the total solve takes roughly three times
as long as there are triple the channels that must be independently
determined (the number of iterations before convergence tends to
be roughly the same for each channel).

We begin our performance evaluation by first determining or con-
firming the optimal parameters for each category of solver. Follow-
ing these preliminary evaluations, we compare the performance of
solvers across different categories.

4.1 SOR Relaxation Parameter

We emprically verify our choice of the optimal relaxation parame-
ter ωopt by observing its convergence behavior compared to a set of
other nearby values of ω. It should be noted that convergence was

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 2000 4000 6000 8000 10000

R
e

si
d

u
a

l
n

o
rm

Iterations

SOR Performance with varying

relaxation parameter

1.8 1.9 1.95 Optimal: 1.986 1.99

163.5

79.4

40.4

19.1

26.6

0 20 40 60 80 100 120 140 160 180

1.8

1.9

1.95

 Optimal: 1.986

1.99

Runtime (seconds)

Figure 6: Residual norm per iteration (top) and runtimes (bottom)
for the SOR solver with various values of ω when applied to the test
image problem at 1/4x resolution.

not achieved within a 20 minute time limit when SOR was applied
the the test image at 1/4x scale for any ω ≤ 1.7, which underscores
the importance of choosing a suitable relaxation parameter. Fig-
ure 6 shows the residual norms at each iteration and total runtime
for a few ω values in the vicinity of ωopt ≈ 1.986. It is clear that
SOR’s convergence rate rapidly improves for values near to ωopt,
and we are able to confirm that the expression for ωopt given by
equation 7 indeed specifies the best choice of ω.

4.2 PCG Preconditioner

The relative performance of different preconditioners (or lack
thereof) for the PCG method are shown in Figure 7. Regular CG
(no preconditioner) and the Jacobi preconditioner show nearly iden-
tical, poor performance, while ICT(0.001) requires the fewest iter-
ations before convergence. The runtimes reflect the same perfor-
mance ordering as the residual norm trends: using either IC(0) or
Gauss-Seidel is roughly 2x slower than the ICT(0.001) precondi-
tioner, and normal CG and using a Jacobi preconditer are about 2x
slower still.

4.3 Multigrid

Informal performance testing revealed that the alternative seamless
cloning formulation of equation 6 ran faster on average than the
standard version from [Pérez et al. 2003] for the multigrid solver.
As such, the multigrid solver performance measures were produced
using the alternative system; in contrast, performance measures for
SOR and PCG both use the standard formulation.

The effect of using different interpolation methods for the restric-
tion and prolongation operators was also briefly considered. When
resampling a residual or correction vector, popular methods in-
clude nearest-neighbor filtering, which is very fast but is likely to

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 200 400 600 800 1000

R
e

s
id

u
a

l
n

o
r
m

Iterations

PCG Preconditioner Performance

ICT(0.001) IC(0) Gauss-Seidel Jacobi CG

21.9

22.0

10.8

10.1

5.7

0 5 10 15 20 25

CG

Jacobi

Gauss-Seidel

IC(0)

ICT(0.001)

Runtime (seconds)

Figure 7: Residual norm per iteration (top) and runtimes (bottom)
for the PCG solver with various preconditioners when applied to
the test image problem at 1/4x resolution.

cause aliasing, bilinear interpolation, and bicubic filtering. Bicu-
bic filtering offers increased smoothness over bilinear filtering at
the cost of a wider kernel that must merge more source pixels.
On the 1/4x scale test image problem, the nearest-neighbor filter-
ing method failed to converge, unsurprisingly. The iteration count
and runtime of the multigrid solver did not significantly differ be-
tween bilinear or bicubic interpolation.Thus, bilinear interpolation
was chosen by convention as the interpolation method for the re-
striction/prolongation operators.

4.4 Comprehensive: Fixed Problem Size

Having determined the value and verified the efficacy of our chosen
parameters in each individual solver category, we are prepared to
compare the performance of the solvers across categories. Figure 8
shows the results when the SOR, CG, PCG with ICT(0.001) pre-
conditioner, and multigrid solvers are applied to the test problem at
1/4x scale. Multigrid and PCG both show make strong showings,
while SOR and un-preconditioned CG exhibit slow convergence for
a problem of this size.

4.5 Comprehensive: Variable Problem Size

A final experiment compares the runtime trends among the solvers
when applied to problems of increasing dimension. Each solver is
applied to the test image problem at scales ranging from 1/16x scale
to full size. The results are shown in Figure 9; we note that they are
generally are comparable with those of similar experiments from
[Ascher and Greif 2011], p. 209.

At 1/16x scale, the test problem contains about 12,400 pixels that
must be determined; as noted above, at full scale, the clone region
contains about 3.1 million pixels. Each solver shows a distinctive

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 200 400 600 800 1000 1200

R
e

s
id

u
a

l
n

o
r
m

Iterations

Overall Solver Performance

Multigrid PCG ICT(0.001) CG SOR

18.8

21.9

5.7

6.4

0 5 10 15 20 25

SOR

CG

PCG ICT(0.001)

MG

Runtime (seconds)

Figure 8: Residual norm per iteration (top) and runtimes (bottom)
of SOR, regular CG, PCG using the ICT(0.001) preconditioner, and
multigrid when applied to the test image problem at 1/4x resolution.
Multigrid clearly requires the fewest iterations, yet its runtime is
slightly longer than PCG with ICT(0.001) preconditioner.

0

1000

2000

3000

4000

1/16x 1/8x 1/4x 1/2x Full

It
e

ra
ti

o
n

s

Problem Scale

Solver Performance by Problem Scale

Multigrid ICT(0.001) CG SOR

0

400

800

1200

1/16x 1/8x 1/4x 1/2x Full

R
u

n
ti

m
e

 (
se

co
n

d
s)

Problem Scale

Multigrid ICT(0.001) CG SOR

Figure 9: Iterations required (top) and runtime (bottom) for con-
vergence as a function of problem scale for SOR, CG, PCG using
the ICT(0.001) preconditioner, and multigrad when applied to the
test image problem at multiple resolutions (resolution increase from
1/16x scale to full).

scaling behavior. At low scales such as 1/16x or 1/8x, all solvers
converge within a couple seconds. However, at full scale, the run-
times of both SOR and unpreconditioned CG explode to over 20
minutes while the solve time of advanced solvers such as PCG us-
ing ICT(0.001) and multigrid runtimes remain somewhat tractable,
coverging to tolerance within a few minutes.

The number of iterations required to reach convergence parallels
the runtime by solver. Both SOR and unpreconditioned CG re-
quire iterations that scale approximately linearly with the problem
size, in accordance with theoretical predictions. The necessary iter-
ation count for convergence using PCG with ICT(0.001) increases
with problem size as well, but at a much lower rate. The multigrid
method, however, requires only a small number of V-cycle itera-
tions regardless of problem size, as expected; the extra processing
occurs within each cycle via the additional resolution levels added
by the increase in problem size.

5 Discussion

Based on our above results, we may imagine that a person tasked
with designing a seamless cloning image editing application would
be well-advised to implement a hybrid approach that chooses which
solver to use for a given cloning instance based on the size of the
clone region. If the region contains only a few thousand pixels, then
we have reason to prefer either SOR or unpreconditioned conjugate
gradient. These solvers are simple to implement and require only
a minimal increase of memory on top of the existing image data
to be run, and their most complex operation is just a matrix-vector
product per iteration. On the other hand, if the user requests a clone
operation that covers hundreds of thousands or millions of pixels,
then SOR and regular CG will not scale to the user’s satisfaction.
The designer of the program may consider switching to a precondi-
tioned CG solver that uses ILU(0) or ICT(0.001) or a multigrid V-
cycle method. While these solvers add complexity and additional
memory requirements (space for the preconditioner matrix if ex-
plicitly formed for PCG, image pyramids of the error/correction for
multigrid), they exhibit performance that scales more acceptably to
large problems.

Seamless cloning between two different images is made possible by
a gradient-level equality constraint between the source and destina-
tion images. As first introduced by [Pérez et al. 2003], the system
of equations that determines pixel values in the clone region has a
unique solution that corresponds to the solution of a Poisson prob-
lem with Dirichlet boundary conditions. The system may be solved
using general sparse iterative methods. This project implemented
and provided performance metrics for variations on three particular
solvers: SOR, conjugate gradient with optional preconditioner, and
a geometric multigrid method.

Current and future work related to gradient-level image editing in-
cludes the implementation of solvers that take advantage of mas-
sively parallel hardware, including GPUs [Jeschke et al. 2009],
as well as implementations that are suitable for low-power, low-
memory mobile devices [Xiong et al. 2009].

References

AGRAWAL, A., AND RASKAR, R. 2007. Gradient Domain Ma-
nipulation Techniques in Vision and Graphics.

ASCHER, U., AND GREIF, C. 2011. A First Course in Numeri-
cal Methods. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

BIRDWATCHINGDAILY.COM. Bald eagle. http:

//cs.birdwatchingdaily.com/BRDCS/media/

p/72070.aspx.

ELDER, J. H., AND GOLDBERG, R. M. 2001. Image editing in
the contour domain. IEEE Trans. Pattern Anal. Mach. Intell. 23,
3 (Mar.), 291–296.

FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002. Gradient
domain high dynamic range compression. ACM Trans. Graph.
21, 3 (July), 249–256.

GRADY, L., TASDIZEN, T., AND WHITAKER, R. T. 2005. A
geometric multigrid approach to solving the 2d inhomogeneous
laplace equation with internal dirichlet boundary conditions. In
ICIP (2), 642–645.

HU, R. Poisson image editing. http://www.eecis.udel.

edu/˜rhu/hw2/HW2page.htm.

JESCHKE, S., CLINE, D., AND WONKA, P. 2009. A gpu laplacian
solver for diffusion curves and poisson image editing. In ACM
SIGGRAPH Asia 2009 papers, ACM, New York, NY, USA, SIG-
GRAPH Asia ’09, 116:1–116:8.

KAHAN, W. 1958. Gauss-Seidel Methods of Solving Large Systems
of Linear Equations. University of Toronto.

MCCANN, J., AND POLLARD, N. S. 2008. Real-time gradient-
domain painting. ACM Trans. Graph. 27, 3 (Aug.), 93:1–93:7.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. ACM Trans. Graph. 22, 3 (July), 313–318.

SAAD, Y. 2003. Iterative Methods for Sparse Linear Sys-
tems, 2nd ed. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

XIONG, Y., WANG, X., TICO, M., LIANG, C.-K., AND PULLI,
K. 2009. Panoramic imaging system for mobile devices. In SIG-
GRAPH ’09: Posters, ACM, New York, NY, USA, SIGGRAPH
’09, 36:1–36:1.

YANG, S., AND GOBBERT, M. K. 2009. The optimal relaxation
parameter for the sor method applied to the poisson equation in
any space dimensions. Applied Mathematics Letters 22, 325 –
331.

(a) Source Image (b) Source Mask

(c) Destination Image

(d) Final seamlessly cloned image

Figure 10: Images used in the performance testing of the iterative solvers. All of the solvers converge to the same final image. The “blue-
ing” visible in the eagle’s wings is a known side effect of Poisson seamless cloning; the merged source pixels tend to take on the color of the
destination image.

